In 2016, the South Carolina Cooperative Fish & Wildlife Research Unit continued to engage our cooperators to address emerging natural resource issues in the State of South Carolina and throughout the United States. Unit scientists continued to advise and mentor graduate students in both MS and PhD programs, and to provide technical assistance to cooperators.
South Carolina Cooperative Fish & Wildlife Research Unit

G 27 Lehotsky Hall
Clemson University
Clemson, SC 29634

Phone: 864-656-0168
Fax: 864-656-1034
www.coopunits.org/South_Carolina

Cooperators:

U. S. Geological Survey
Clemson University
South Carolina Department of Natural Resources
U. S. Fish and Wildlife Service
Wildlife Management Institute

TABLE OF CONTENTS

COOPERATORS AND PERSONNEL .. 4
COORDINATING COMMITTEE .. 4
UNIT PERSONNEL ... 5
COLLABORATORS ... 6

GRADUATE EDUCATION .. 8
CURRENT STUDENTS ... 8
RECENT GRADUATES ... 8

RESEARCH ... 9
COMPLETED PROJECTS ... 9
CURRENT PROJECTS ... 12
NEW PROJECTS .. 22

PUBLICATIONS ... 25
JOURNAL ARTICLES 2015-2016 .. 25
THESIS AND DISSERTATIONS 2015-16 ... 26

ACTIVITIES .. 27
TECHNICAL ASSISTANCE ... 27
TRAINING DELIVERED .. 27
TRAINING ATTENDED ... 27
PRESENTATIONS AND SEMINARS .. 28
SERVICE .. 31
AWARDS AND HONORS .. 32
PRESS/PUBLIC OUTREACH .. 32
COOPERATORS AND PERSONNEL

COORDINATING COMMITTEE

United States Geological Survey

John Organ, Chief, Cooperative Research Units, 12201 Sunrise Valley Drive, Reston, VA 20192

Kevin Whalen, Southern Supervisor, Cooperative Research Units, 12201 Sunrise Valley Drive, Reston, VA 20192

South Carolina Department of Natural Resources

Alvin A. Taylor, Director, South Carolina Department of Natural Resources, PO Box 167, Columbia, SC 29202

Emily Cope, Deputy Director for Wildlife and Freshwater Fisheries, South Carolina Department of Natural Resources, PO Box 167, Columbia, SC 29202

Derrell Shipes, Chief of Wildlife Statewide Projects, Department of Natural Resources, PO Box 167, Columbia, SC 29202

Clemson University

George Askew, Vice President, Public Service and Agriculture, and Dean, College of Agriculture, Forestry and Life Sciences, Clemson University 101 Barre Hall, Clemson, SC 29634

Greg Yarrow, Chair, Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall, Clemson, SC 29634

Wildlife Management Institute

Steve Williams, President, Wildlife Management Institute, Gardners, PA 17324
UNIT PERSONNEL

Scientists

Patrick Jodice, Unit Leader, U.S. Geological Survey, and Associate Professor, Department of Forestry and Environmental Conservation

Beth Ross, Assistant Unit Leader-Wildlife, U.S. Geological Survey, and Assistant Professor, Department of Forestry and Environmental Conservation

Juliet Lamb, Post-Doctoral Research Associate, South Carolina Cooperative Fish & Wildlife Research Unit and Department of Forestry and Environmental Conservation

Staff

Carolyn Wakefield, Administrative Assistant

Yvan Satgé, Research Specialist
COLLABORATORS

Clemson University:
Robert Baldwin, Department of Forestry and Environmental Conservation
Kyle Barrett, Department of Forestry and Environmental Conservation
William Bridges, Mathematical Sciences
Saara DeWalt, Biological Sciences
Patrick Gerard, Mathematical Sciences
David Jachowski, Department of Forestry and Environmental Conservation
Laura Jodice, Parks, Recreation and Tourism Management
Rick Kaminski, Department of Forestry and Environmental Conservation
Yoichiro Kanno, Department of Forestry and Environmental Conservation
Robert Powell, Parks, Recreation and Tourism Management
Thomas Rainwater, Department of Forestry and Environmental Conservation
John Rodgers, Department of Forestry and Environmental Conservation
Shari Rodriguez, Department of Forestry and Environmental Conservation
Jacob Sorber, School of Computing
Greg Yarrow, Department of Forestry and Environmental Conservation

South Carolina Department of Natural Resources Cooperators:
Jay Buffiloski, Wildlife Biologist
Breck Carmichael, Special Assistant to the Director
Tanya Darden, Marine Resources Research Institute
Jamie Dozier, Tom Yawkey Wildlife Center
Amy Fowler, Marine Resources Research Institute
Du Bose Griffin, Marine Turtle Conservation Program
Christy Hand, Wildlife Biologist
Mary Catherine Martin, Wildlife Biologist
Felicia Sanders, Wildlife Biologist
Mark Scott, Fisheries Biologist
Derrell Shipes, Chief of Wildlife Statewide Projects
Amy Tegeler, Bird Conservation Coordinator
Janet Thibault, Wildlife Biologist
Tammy Wactor, Wildlife Biologist

Federal Agency Cooperators:
Laurel Barnhill, USFWS
Sarah Dawsey, USFWS Cape Romain Natural Wildlife Refuge
Deborah Epperson, BSEE
Jeff Gleason, USFWS
Mike Hooper, USGS
Scott Johnston, USFWS
Susan C. Loeb, Southern Research Station, USFS
Jack Mayer, Savannah River National Laboratory
Dave Moran, BOEM
Raye Nillius, USFWS Cape Romain Natural Wildlife Refuge
John Stanton, USFWS
Melanie Steinkamp, USFWS
Edward (Jerry) Tupacz, USFWS, Wildlife Biologist
Stacy Vander Pol, National Institute Standards and Technology
Craig Watson, USFWS Ecological Services, Charleston, SC
 Bureau of Ocean Energy Management
 USFWS Region 4, Cape Romain Natural Wildlife Refuge
 USFWS Migratory Bird Management Office
 USFWS Ecological Services
 USFS Southern Forest Experiment Station
 USFS, Daniel Boone National Forest
 USFS Nantahala National Forest
 USFS Northern Research Station
 National Park Service, Congaree National Park
 National Park Service, Big South Fork National River & Recreation Area
 National Park Service, Obed Wild and Scenic River
 National Park Service, Fire Effects Team, Great Smoky Mountains

Private Sector Cooperators:
 Bahamas National Trust
 Biodiversity Research Institute
 Georgia Sea Turtle Center
 International Crane Foundation
 National Fish and Wildlife Foundation
 The Nature Conservancy
 Nemours Wildlife Foundation
 Society for the Conservation and Study of Caribbean Birds
 St. Catherine's Island Wildlife Survival Center

Cooperating Scientists from other Colleges, Universities, and Institutes:
 Evan Adams, BioDiversity Research Institute
 Dave Evers, BioDiversity Research Institute
 Lisa Ferguson, Wetlands Institute
 Christine Fiorello, Oiled Wildlife Care Network
 Peter Frederick, University of Florida
 Lou Gillette, Medical University of South Carolina
 Christian Hagen, Oregon State University
 Chris Haney, Defenders of Wildlife
 Autumn-Lynn Harrison, Smithsonian Institute
 David Haukos, Kansas Cooperative Fish and Wildlife Research Unit
 David Koons, Utah State University
 William Mackin, Guilford College
 Hannah Madden, St. Eustatius National Parks
 Adriana Mancada, El Colegio de la Frontera Sur Unidad Campeche, Mexico
 Ken Meyer, Avian Research Conservation Institute
 Clint Moore, Georgia Cooperative Fish and Wildlife Research Unit
 Darshan Narang, Environmental Management Authority, Trinidad & Tobago
 Katie O'Reilly, University of Portland
Ben Parrott, University of Georgia
James Pitman, Western Association of Fish and Wildlife Agencies
Richard Philips, British Antarctic Survey
Daniel D. Roby, Oregon Cooperative Fish and Wildlife Research Unit
Rob Ronconi, Acadia University
Ernst Rupp, Grupo Jaragua
John Speakman, Aberdeen University
Robert Suryan, Oregon State University
Richard Veit, City College of New York
George Wallace, American Bird Conservancy
Susan Zaluski, Jost van Dyke Preservation Society, BVI
Michael Ziccardi, Oiled Wildlife Care Network

GRADUATE EDUCATION

CURRENT STUDENTS

Leanne Burns, M.S. Wildlife & Fisheries Biology (Advisors: Jodice & Loeb)
Sarah Kimpel, M.S. Wildlife & Fisheries Biology (Advisors: Jodice & Loeb)
Abigail Lawson, Ph. D. Wildlife & Fisheries Biology (Advisor: McFadden & Jodice)
Brian Leo, Ph. D. Wildlife & Fisheries Biology (Advisor: Jodice)
Hannah Madden, M.S. Natural Resources, University West Indies (Advisor: Jodice)
Hannah Plumpton, M.S. Wildlife & Fisheries Biology (Advisor: Ross)
Rochelle Streker, M.S. Wildlife & Fisheries Biology (Advisor: Jodice & Lamb)
Fumika Takahashi, M.S. Wildlife & Fisheries Biology (Advisor: Jodice)
Hillary Thompson, M.S. Wildlife & Fisheries Biology (Advisor: Jodice)
Jesse Wood, M.S. Wildlife & Fisheries Biology (Advisor: Ross)

RECENT GRADUATES

Shefali Azad, M.S. Wildlife & Fisheries Biology (Advisors: McFadden & Jachowski)
Jonathan Brooks, M.S. Wildlife & Fisheries Biology (Advisors: Jodice & Loeb)
Juliet Lamb, Ph. D. Wildlife & Fisheries Biology (Advisor: Jodice)
Susan Sullivan, M.S. Wildlife & Fisheries Biology (Advisor: McFadden & Jodice)
RESEARCH

COMPLETED PROJECTS

Population Modeling of Black Bears in Northwestern South Carolina

Black Bears (*Ursus americanus*) are managed as a game species in the northwestern region of South Carolina. Although harvest, roadkills, and bear sightings have been increasing over the past few decades, no formal research study in the state has examined their long-term population trends. Additionally, while state agencies regularly conduct bait-station surveys and acorn mast surveys, the usefulness of these data as population indices had not been evaluated.

This project developed and investigated the performance of a number of population models based on multiple data streams, applied to Black Bears in the northwestern region of South Carolina. The various data streams used to develop the models included 1) sex-specific age-at-harvest matrices derived from harvest records, 2) capture-recapture matrices from genetic analysis of hair snares, 3) bait station visitation by bears, 4) acorn mast indices for the region of interest, and 5) human-bear interactions.

A population reconstruction model using the Downing method was developed to establish long-term abundance trends. An extended working model that could incorporate future harvest data was also delivered to SCDNR. Capture-recapture population models using both spatial and non-spatial approaches in a maximum-likelihood framework were developed to establish a current baseline density for the Black Bear population in the region. Finally, the usefulness of bait station and acorn mast indices to predict population growth rates and human-bear interactions was investigated. While acorn mast trends significantly predicted growth rates and interactions, bait station indices did not. It was recommended that SCDNR develop a focused study into the viability of increasing resources to improve the statistical power of the bait station surveys.

INVESTIGATORS:
Kate McFadden (SC CRU),
David Jachowski (Clemson University),
Patrick Jodice (SC CRU)

STUDENT:
Shefali Azad (M.S., Clemson University)

SPONSORS:
SCDNR

DATES:
2014 - 2016

Early successional habitat (ESH) is important for many wildlife species. Over the past century, land use changes have caused ESH to decline in eastern hardwood forests. Bats, which utilize ESH for foraging, are also a conservation concern, however little information is available on how ESH restoration affects bats. Our objective was to determine how opening size, presence of edge, prey abundance, vegetation structure, and environmental factors affect bat activity in forest openings.

In June-August 2014 and May-August 2015, we placed Anabat SD2 bat detectors, Townes-style Malaise insect traps, and iButton temperature loggers at the interior and edge of small (0.2-1.6 ha), medium (2.1-5.6 ha), and large (6.2-18.5 ha) forest openings in the Nantahala National Forest, North Carolina. Recorded call files were identified to species and insect specimens were counted and identified to order. Mean nightly temperature was also determined and vegetation surveys were conducted to quantify vegetation structure.

Opening size and presence of edge did not affect total insect abundance, however there was a positive effect of live and dead tree basal area and mean nightly temperature. Overall bat activity was significantly higher at opening edges compared to opening interiors, was positively related to mean nightly temperature, and was negatively related to vegetation structure. Activity of open-adapted species was also negatively related to vegetation structure. These results suggest that in the southern Appalachian Mountains opening vegetation structure and environmental factors are important for determining bat activity. Open-adapted bats may select foraging patches with less vegetation structure because they can forage more efficiently in these environments, whereas clutter-adapted bats can forage efficiently in both cluttered and open environments. When creating ESH, land managers should maintain an open vegetation structure to benefit open-adapted bat species, focus on creating openings at lower elevations, and configure openings to maximize edge relative to opening area.
Modeling Use of Obed Wild and Scenic River Sport Climbing Areas by Rare and Sensitive Bats

Sport climbing is a rapidly growing sport in the US and elsewhere. Although several species of bats commonly roost in cliffs, the potential for impacts of climbers on bats has not been examined. We initiated a pilot study on the potential impacts of sport climbing on bats in Obed Wild and Scenic River, TN to: 1) determine if Small-footed Bats (Myotis leibii) avoid climbed cliffs for roosting, and 2) determine if overall bat foraging and commuting activity varies between climbed and unclimbed areas.

We used radio-telemetry to track Small-footed Bats to day roosts, and Anabat SD2 detectors to compare bat activity between climbed and unclimbed areas of regularly climbed cliff faces, and between climbed and unclimbed cliffs. Four adult male Small-footed Bats were tracked to nine day roosts, all of which were in various types of crevices including five cliff face roosts (three on climbed and two on unclimbed faces). Other roosts were in boulders in the river and between upright boards in a barn. Overall bat activity was significantly higher along climbed cliffs than unclimbed cliffs although species richness did not differ between climbed and unclimbed cliffs. Lower activity along unclimbed cliffs may have been related to lower cliff heights and more clutter along these cliff faces. Our data suggest that cliffs are important foraging and commuting habitats for bats in Obed Wild and Scenic River and may also be important roosting areas. Cliffs may provide abundant food resources, protection from predators, and navigational aids for bats.
CURRENT PROJECTS

Lesser Prairie-Chicken Response to Environmental Change in Kansas

INVESTIGATORS:
Beth Ross (SC CRU, KS CRU),
David Haukos (KS CRU),
Christian Hagen (Oregon State University),
Jim Pitman (WAFWA)

SPONSORS:
USDA NRCS

DATES:
2013-2016

Significant numbers of Lesser Prairie-chickens of Kansas and Colorado are associated with former croplands that have been enrolled in a U.S. Department of Agriculture conservation programs/practices, principally the Conservation Reserve Program (CRP) and Environmental Quality Incentive Program (EQIP). At a broad-scale CRP has reduced habitat fragmentation and assisted in connecting extant and expanding populations. Additionally, conservation practices with CRP fields that may be affecting these populations include vegetation species composition, development of supplemental water areas, mid-term management practices, and emergency haying/grazing declarations. Use of CRP may also be related to juxtaposition of CRP, cropland, and other land uses.

In addition, the overall population response by Lesser Prairie-chickens to conservation programs needs to be assessed in regard to demography of the population to model future population trends. Concurrent with CRP and land use practices, more information is needed on the response of Lesser Prairie-chickens to changes in climate. The Great Plains region is predicted to experience increasing drought conditions, which could negatively affect Lesser Prairie-chickens in the future. A better understanding of the interaction between land use and climate change on Lesser Prairie-chicken population demographics is important for future management practices.

Our results thus far indicate that extreme values of Palmer Drought Severity Index (both low and high, or dry and wet conditions) during the spring breeding season were the best predictors of changes in Lesser Prairie-chicken abundance, though neither had a significant effect on male Lesser Prairie-chicken abundance on leks. Abundance on leks was highest during the mid-1980s, followed by low population abundance in the 1990s. The population has remained relatively stable since the late 1990s. Additionally, increasing the ratio of cropland to grassland in a given area (i.e., moving towards more cropland) reduces the resilience of Lesser Prairie-chickens to extreme drought conditions. Using an integrated population model, we found that juvenile survival is likely most impacted by extreme drought causing the shifts in population abundance.

American Horseshoe Crab (*Limulus polyphemus*) eggs provide migratory shorebirds with an abundant food source at stopover sites, allowing the birds to rapidly gain weight for their long migration to arctic breeding grounds. Shorebird utilization of Horseshoe Crab eggs has been well documented at northeastern stopover sites such as the Delaware Bay. However, this relationship has not been well studied in the southeast, specifically in South Carolina. The purpose of this study is to determine if there is a correlation between density of Horseshoe Crab eggs and abundance of foraging shorebirds during spring migration at Cape Romain National Wildlife Refuge.

To accomplish this, we monitored 10-12 study plots between March and June 2015-2016 at predicted Horseshoe Crab spawning sites throughout the refuge. We conducted weekly shorebird surveys and sampled plots twice a month for densities of Horseshoe Crab eggs. Across both years, we collected 1,081 Horseshoe Crab egg samples and conducted 325 shorebird surveys. Additionally, we coordinated refuge-wide Horseshoe Crab spawning surveys on the evenings of 2 June 2015, and 22-24 May 2016. We used a linear regression to compare the density of eggs in each plot with the number of foraging shorebirds. Our results show a positive correlation between foraging shorebirds and Horseshoe Crab eggs for both years.

Additional analyses will further explore this relationship by conducting a dietary analysis of shorebird fecal samples. We will also investigate the relationship between sand grain size and the presence of shorebirds and Horseshoe Crab eggs across our study site beaches. The results of our study will help to provide a better understanding of Cape Romain NWR as a stopover site for shorebirds and enable us to compare densities of Horseshoe Crab eggs and spawning adults with other stopover sites along the Atlantic coast.
Nonbreeding Habitat Assessment of Whooping Cranes in a Reintroduced Population

In the late 1940s, the endangered wild population of Whooping Cranes (Grus americana) numbered ca. 15 individuals which nested in northern Canada and wintered in coastal Texas. To safeguard this species from extinction, an Eastern Migratory Population (EMP) of 100 individuals was reintroduced in 2001 at breeding grounds in Wisconsin. Initially the population wintered along the Florida Gulf coast but beginning in 2007, the winter range expanded north to include areas from Florida to southern Indiana. While a general understanding of migratory routes and wintering sites has been obtained for the EMP, a thorough assessment of wintering habitat use has not been conducted.

Field work was conducted during the 2015-16 winter season. We focused on assessment of local scale habitat data for wintering Whooping Cranes across the southeastern United States. We collected data from 23 groups of cranes in 8 states. Preliminary analysis suggests that presence of a nearby protected area was an important variable predicting use. Additional analyses will focus on including a measure of soil wetness or potential to be inundated to assess use of flooded agricultural areas. Daily movement patterns and home range sizes are also being assessed. We also are investigating landscape scale habitat use during migration. We are using satellite telemetry data to examine migration route fidelity among years and stopover habitat use. Preliminary analyses suggest that Whooping Cranes are not using the exact routes learned during first year migration (i.e., when led by the ultralight plane), but instead are ranging ca. 90-120 km from the original learned route. Preliminary results also suggest that Whooping Cranes are using stopover areas that are protected sites and sites characterized as either agriculture or wetlands. Project completion is anticipated by December 2016. This research will aid in the understanding of the ecology and management of non-breeding Whooping Cranes, the management of wintering and stopover sites, and eventually in the recovery of this endangered species.
Modeling Bat Assemblages and Habitat Use Across Big South Fork National River and Recreation Area: Potential Effects of Prescribed Fire

As the practice of prescribed burning becomes more common for the management of eastern forests, understanding if, and how, foraging bats respond to structural changes generated by fire is of increasing importance. As the Big South Fork National River and Recreation Area (BISO) Fire Management Plan is revised, this project aims to provide data on seasonal bat use and habitat associations that will enhance the plans’ ability to safely and productively manage forests with prescribed fire for rare and endangered bats occupying the area.

To date, all summer and winter sampling has been completed. Acoustic detectors were used to assess bat presence and activity throughout the annual cycle on BISO by simultaneously monitoring activity levels in forest sites with varying burn histories and adjacent unburned sites. Meteorological data were collected and vegetation surveys were conducted at each site to quantify environmental and structural characteristics. A total of 9,209 bat passes at 164 sites were recorded during the summer of 2014 and 2015, and a total of 2,739 bat passes at 9 sites were recorded during the 2014-2015 winter season with 6 species/species groups identified. Analysis of 2015-2016 winter season data is ongoing.

Models that estimate detection probability and site occupancy are currently being fit to evaluate a priori hypotheses concerning habitat and landscape factors affecting bat presence and activity. Data indicate measures of structure (e.g., tree density and basal area) are significantly lower in burned than unburned sites and bat occupancy is most strongly associated with lower vegetative structure, higher elevation, and a history of burning in open stand types. Our results suggest that the lower vegetative structure associated with prescribed fire may increase foraging suitability for bats in mixed forests of the Cumberland Plateau.

INVESTIGATORS:
Susan Loeb (USFS),
Patrick Jodice (SC CRU)

STUDENT:
Leanne Burns (M.S.,
Clemson University)

SPONSORS:
USGS

DATES:
2014–2016

Image: Recently burned site adjacent to unburned site – L. Burns, 2016
South Carolina Alligator Adaptive Management Strategies: Population Dynamics, Habitat Utilization, and Conservation Threats

The American Alligator (Alligator mississippiensis) is an iconic species in South Carolina and has substantial ecological and economic importance. This study is investigating alligator population ecology using multiple analytical methods to establish an adaptive management framework for harvest decision-making. The primary study objectives are to (1) improve the study design for alligator monitoring programs to better reflect annual variation in alligator size class-specific abundance, (2) identify factors that influence said variation, and (3) evaluate the influence of alligator habitat use patterns on management decisions.

Spring 2016 marked the final field season of a three-year study aimed at estimating seasonal alligator abundance and evaluating the influence of survey design on abundance estimation precision and accuracy (objectives 1 and 2). Evaluating seasonal patterns in abundance and detection probability will allow us to determine how varying survey design components (e.g., replicate number, season) influence these estimates and in turn, management decisions.

This spring we also continued the movement ecology study, aimed at evaluating male alligator movement patterns and habitat use (objective 3), and relating said patterns to variation in seasonal abundance in surveyed areas. In 2015 we deployed 24 transmitters, 21 of which remained attached and functioning as of April 2016. This year, we tagged five additional adult male alligators at the Tom Yawkey Wildlife Center. Both the survey and movement data indicate that seasonal habitat-specific alligator abundance is highly variable, and likely driven by water-level manipulation in impounded wetlands.

INVESTIGATORS:
Kate McFadden (SC CRU),
Derrell Shipes & Jay Butfiloski (SCDNR),
Clint Moore (GA CRU),
Patrick Jodice (SC CRU)

STUDENT:
Abby Lawson (Ph.D., Clemson University)

SPONSORS:
SCDNR, USGS

DATES:
2013 – 2017

Eastern Brown Pelicans: Movement Patterns, Habitat Characteristics, Demographics, and Contaminant Exposure in the Northern Gulf of Mexico

This study focuses on obtaining information about populations of Brown Pelican (*Pelecanus occidentalis*) across the northern Gulf of Mexico. Study objectives are to (1) document dispersal, seasonal and annual movements, seasonal home range, and site fidelity of marked adult Brown Pelicans among nesting colonies from the Gulf coast, (2) compare contaminant exposure risk, contaminant levels, and health parameters in adult and nestling Brown Pelicans from various colony sites, and (3) document the relationship of local environmental and nest site characteristics to nestling survival and recruitment.

The study addresses information gaps relative to Brown Pelicans in the Gulf of Mexico and provides baseline ecological information. In particular, limited information is known regarding foraging behavior for this species and the general ecology of immature eastern Brown Pelicans in the northern Gulf of Mexico is also poorly understood. The project is not intended to be a post-spill study, but rather to address data gaps for management agencies as it pertains to development of additional oil and gas projects in the Gulf. Research builds from and complements previous and ongoing research efforts of the PI in the Gulf and in coastal SC.

To date, we have deployed 93 remote-downloading GPS tags on adult pelicans in the northern Gulf: 25 tags in Florida, 5 in Alabama, 32 in Louisiana, and 31 in Texas. We have used tracking data to analyze preferred marine habitat characteristics and analyze individual and colony-wide variation in home ranges, habitat characteristics, and migratory patterns. We have also collected breeding data from each colony including chick survival from hatch to fledge, chick body condition, chick stress levels, chick diet composition, and nestling provisioning rates. To date, we have color-banded 600 pelican nestlings and are conducting an ongoing citizen science effort to re-sight color bands and investigate the dispersal patterns of juveniles during their first winter.

Future analysis will focus on comparing health, contaminant loads, and stress across colony sites, determining genetic correlates of migratory behavior, and investigating drivers of local-scale variation in nesting success and chick survival.

INVESTIGATORS:
Patrick Jodice (SC CRU)

STUDENT:
Juliet Lamb (Ph.D., Clemson University), Rochelle Streker (M.S., Clemson University)

SPONSORS:
Bureau of Ocean Energy Management, USGS

DATES:
2012 – 2018

![Image: Eastern Brown Pelican colony in Florida – J. Lamb, 2015](image-url)
In June of 2015, we began collaborating with a research group at the University of California Davis on a project tracking post-release survival and movements of rehabilitated Brown Pelicans along the California Coast. Initiated and funded by the Oiled Wildlife Care Network (OWCN), this study seeks to compare both movements and mortality rates of non-oiled control pelicans to those observed in pelicans that were rescued, cleaned, and eventually released following the Refugio Oil Spill in Santa Barbara, California.

During the initial phase of the project, we determined appropriate transmitter specifications and procured transmitters on short notice. Juliet Lamb provided training to OWCN staff members and rehabilitators at their Los Angeles facility, including a demonstration of harness attachment techniques. In all, twelve GPS transmitters were deployed on rehabilitated pelicans, with an additional eight transmitters on wild-caught control birds.

Since deployment of tags we have continued to assist with data management and provided data summaries and support as needed. In 2016-17 we will work with OWCN to analyze and publish the movement data resulting from this effort.
Creative Inquiry: Using Computing Engineering to Improve Seabird Conservation (FNR 4700 010)

Pelagic seabirds, which travel through expansive and distant marine regions for foraging, are one of the most threatened groups of birds globally and present unique conservation challenges. Informing assessments of threats requires defining spatial and temporal use areas at sea through the deployment of tracking loggers. Thanks to advances in miniaturization, such devices are now able to archive daily locations of smaller species of seabirds over several years. Use of this technology, however, is restricted by the fact that such archival loggers must be recovered to allow access to tracking data. Current methods used to recover loggers are time-consuming or require expensive infrastructure, and are inefficient for monitoring seabirds in extremely remote locations.

In collaboration with Dr. Jacob Sorber (Clemson University School of Computing), PIs created this Creative Inquiry as a research and development branch to the TRACS projects. Nine undergraduate students enrolled in the course and designed an automated computing device using low-power, low-cost components to record when tracked birds use their nesting sites. The PIs and their collaborators in the field can also be alerted over the Internet via satellite when the birds they study return from migration. Additionally, this device can be used to monitor nest attendance (an important factor for the study of breeding biology) among multiple bird species. There are plans to use the device to help with the recovery of archival loggers from Caribbean seabirds, and to study the nest attendance patterns of endangered Black-capped Petrels and Peruvian Diving-petrels.

INVESTIGATORS:
Patrick Jodice & Yvan Satgé (SC CRU), Jacob Sorber (Clemson University)

SPONSORS:
Clemson University

DATES:
2015–2016

Image: Adult Red-billed Tropicbirds and chick, St Eustatius – Y. Satgé, 2016

Tracking Atlantic and Caribbean Seabirds (TRACS)

Many species of seabirds breeding in the Caribbean occupy waters off the Atlantic and Gulf coasts of the US during some portion of the annual cycle. As marine spatial planning becomes a pressing issue in the region, data are needed to enhance our understanding of the seabird community in the South Atlantic Bight and the Gulf of Mexico. Although current ship-based and aerial surveys are the standard methods used to measure abundance and distribution of birds at sea, each is a population-based survey that provides information without regard to individual variability or colony of origin. We are deploying tracking devices to measure movement patterns of seabirds in the Caribbean, Gulf of Mexico, and Northwest Atlantic. Data from individual tracking efforts will allow us to assess variability in movements and use patterns, fidelity to specific marine locations, and the relationship between marine use areas and breeding locations and population trends at the breeding grounds. To date, we have collected tracking data from six species of pelagic seabirds in Mexico, Jamaica, the Dominican Republic, The Bahamas, British Virgin Islands, St Eustatius and Tobago in collaboration with federal agencies, and local Universities and NGOs.

Our research builds upon tracking work we initiated in the Bahamas in 2008-2010 and also takes advantage of the Capacity Building project we initiated in the Caribbean. As such, we are closely collaborating with the University of the West Indies in advising M.S. student Hannah Madden in St Eustatius for the study of the breeding biology and spatial ecology of the local population of vulnerable Red-billed Tropicbird (*Phaethon aethereus*). In April of 2016, we conducted a pilot study to deploy GPS loggers on breeding adults; based on this effort we will be able to improve our tracking effort during the winter of 2017. These data will complement our earlier studies on the connectivity of Caribbean seabird species.

Details on each project, including a complete list of sponsors and collaborators, can be found at www.atlanticeabirds.org

INVESTIGATORS:
Patrick Jodice (SC CRU)

PRIMARY SPONSORS:
USFWS, USGS, American Bird Conservancy, Avian Research & Conservation Institute, Jost Van Dyke Preservation Society, National Fish and Wildlife Foundation

DATES:
2012 – 2017

Assessment for the Potential for White Nose Syndrome in Bats of Congaree National Park

The Southeastern Myotis (Myotis austroriparius) is a rare and sensitive species that is associated with mature bottomland forests. Little is known about the ecology of this species, particularly its roosting habits. Further, White Nose Syndrome (WNS), a disease caused by the fungal pathogen, Pseudogymnoascus destructans which kills bats during their winter hibernation period, was recently found in Richland County, home of Congaree National Park. Thus, our objective is to determine the roosting habits of Southeastern Myotis in Congaree National Park and to assess their susceptibility to WNS. To this end, we are examining Southeastern Myotis torpor patterns, tree microclimates, roost selection, roost fidelity, and roost networks.

Since January 2015 we located 73 roosts through opportunistic cavity searches or radiotelemetry. Forty roosts were found during winter months, and 33 during summer months. We also conducted weekly netting of roost trees throughout winter and summer. Initial results suggest that Southeastern Myotis use multiple roots over the course of a season, and that they utilize “hub trees,” which are used more frequently, for longer periods of time, and by more bats than other roosts. We are investigating the difference in microclimate between roost and non-roost trees by deploying temperature and relative humidity loggers into cavities in roost trees, reference trees, and at ambient points. We are also conducting vegetation plot surveys to understand the effect of plant community structure on roost site selection.

During winter 2015-2016, we collaborated with Dr. Daniel Lindner, U.S. Forest Service, Northern Research Station to test whether bats in Congaree National Park and surrounding areas are carrying P. destructans and thus may be susceptible to WNS. To date, all samples have tested negative.

INVESTIGATORS:
Susan Loeb (USFS), Patrick Jodice (SC CRU)

STUDENT:
Sarah Kimpel (M.S., Clemson University)

SPONSORS:
National Park Service

DATES:
2015 – 2017
NEW PROJECTS

Innovative Approaches to Monitoring Success of Farm Bill Incentive Programs in Conserving Avian Wildlife on Private Lands

A primary focus of Farm Bill conservation incentive programs is to promote habitat conservation of at-risk species. Given that over 77% of land in South Carolina is under private ownership, conservation of the many at-risk bird species in the state requires effective design and implementation of habitat conservation incentive programs on private lands. However, feedback on whether Farm Bill habitat conservation incentive programs such as EQIP have been successful has largely been limited to anecdotal evidence and informal feedback from program participants and partners.

We are initiating a new research project in Spring of 2017 to assess the conservation impact of Farm Bill programs in SC. The objectives of this project are to 1) evaluate the effectiveness of Farm Bill programs (e.g., EQIP) at conserving habitat and wildlife, and 2) assess the use of audio recorders as a tool for monitoring bird species of conservation concern on private lands. Findings will not only provide guidance on improved monitoring effectiveness of incentive programs, but provide unique insights into how such technology can be used to identify areas of future focus.

INVESTIGATORS: Beth Ross (SC CRU), Amy Tegeler (SCDNR), David Jachowski (Clemson University)

STUDENT: Jesse Wood (M.S., Clemson University)

SPONSORS: USDA NRCS

DATES: 2016-2018

Habitat Use and Species Distribution of Black Scoters in the Atlantic Flyway

Sea ducks are a poorly understood avian group, and while populations are thought to be declining, developing effective means to track abundance and long-term trends has remained a challenge. Currently, the best information on sea duck abundance is based on aerial surveys conducted by the U.S. Fish and Wildlife Service during the 2008-2012 winters along the Atlantic Flyway.

The goal of this project is to quantify habitat use and species distribution of Black Scoters (Melanitta americana) in the Atlantic Flyway during winter using existing aerial survey data from U.S. Fish and Wildlife Service. The results of the project will enhance our understanding of the ecology of Black Scoters, be used to develop future aerial surveys for sea ducks, and may be used to evaluate how off-shore wind energy development may affect Black Scoter populations. The project began in August 2016.
Spatial Ecology, Movement Patterns, and At-sea Habitat Use of Nearshore Seabirds in the South Atlantic Bight

The Eastern Brown Pelican is a species of conservation concern that breeds and winters throughout the southeastern US. Our understanding, however, of daily and annual movements in this region is limited. Given the interest in development of offshore wind energy and the potential for oil & gas leasing in offshore habitats, data are needed to assess potential interactions with seabirds.

This study will assess at-sea habitat use, movement patterns, and migration paths of adult Brown Pelicans throughout the southeastern US and throughout the annual cycle. We propose to capture ca. 100 adults at nesting colonies in SC, GA, and north FL, and to deploy GPS satellite transmitters. Seasonal home range maps will be developed for each individual and core use areas also will be mapped for the population. All of the above data will be used to determine high, moderate, and low use areas at sea throughout the year. Movement and use data will be layered with available marine habitat data to provide environmentally based risk assessments for each species.

The research effort is led by the USGS Cooperative Research Unit in South Carolina with collaboration from USFWS, SC DNR, GA DNR, FL FWC, NC Wildlife Resources Commission, and Clemson University.

Data will support NEPA analyses and research needs identified at the BOEM sponsored Atlantic Wind Energy Workshop 2011, the BOEM Studies Development Plans for Fy13-15, and avifauna chapter of the information synthesis developed for BOEM for the South Atlantic Planning area (authored by the PI).
PUBLICATIONS

JOURNAL ARTICLES 2015-2016

* indicates graduate student advisee
THESES AND DISSERTATIONS 2015-16

Jonathan Brooks, Department of Forestry and Environmental Conservation, M.S., August 2016: Effect of forest opening landscape characteristics, prey availability, and environmental factors on bat activity in the Southern Appalachians (Co-advised by Dr. S Loeb, USFS)

Juliet Lamb, Department of Forestry and Environmental Conservation, Ph.D., May 2016: Ecological Drivers of Brown Pelican Movement Patterns and Reproductive Success in the Gulf of Mexico

Susan Sullivan, Department of Forestry and Environmental Conservation, M.S., December 2015: Innovative Approaches to Manage and Reduce Wild Hog Damage in South Carolina (Co-advised by Drs. Kate McFadden and Greg Yarrow)
ACTIVITIES

TECHNICAL ASSISTANCE
Y. Satgé trained Sint Eustatius National Park biologists to deploy, recover and analyze data from GPS tracking devices on local Red-billed Tropicbirds.

TRAINING DELIVERED
B. Ross participated in teaching an “Introduction to R” workshop at The Wildlife Society Conference in 2015. The workshop reached a wide audience including state and federal biologists as well as NGO employees.

TRAINING ATTENDED
S. Kimpel attended Conservation Leaders for Tomorrow, in Mansfield, Georgia.

J. Lamb attended Marxan and Marxan with Zones (Pac-MARA) workshops in St. John’s, Newfoundland.

A. Lawson attended Applied Hierarchical Modeling in Ecology Workshop, Patuxent Wildlife Research Center in Laurel, MD; Spatial Capture-Recapture Workshop in Athens, Georgia; and Analyses of Wildlife Telemetry Data with the rhr Package for R, the Wildlife Society Annual Conference in Winnipeg, Manitoba.

F. Takahashi attended SCDNR’s Shorebird/Seabird Workshop in Charleston, SC.

PRESENTATIONS AND SEMINARS

Invited Presentations

Contributed Papers / Presentations / Posters

* graduate student advisee
SERVICE

P. Jodice, Chair (Elected), World Seabird Union (2015-2020)
P. Jodice, USGS Research Grade Evaluation, Panel Chair
P. Jodice, Steering Committee Member, Gulf of Mexico Avian Monitoring Team
P. Jodice, Steering Committee Member, Atlantic Marine Bird Cooperative
B. Ross, Kennedy Center Advisory Council

STUDENTS

J. Brooks, Contributor, National White-nose Syndrome Recovery Plan
L. Burns, Senator, Graduate Student Government, Clemson University. 2014-2016
L. Burns, Dean Graduate Student Advisory Board, CAFLS, Clemson University. 2015-2016
L. Burns, Board Member, North American Society for Bat Research. 2015-2017
L. Burns, Committee Member/Team Leader, Southeastern Bat Diversity Network Bat Blitz, 2015-2016
S. Kimpel, Graduate Representative, Student Disability Services Advisory Board, Clemson University.
J. Lamb, Executive Council member, Waterbird Society. 2015-2019
J. Lamb, Co-Chair, Student Affairs Committee, and Member, Diversity Committee, Waterbird Society.
J. Lamb, Speaker Series Seminar Coordinator, Clemson University. 2015-2016
J. Lamb, Gulf of Mexico Avian Monitoring Network, Seabird Group.
A. Lawson, Speaker Series Seminar Committee, Clemson University. 2016-2017
A. Lawson, Membership Chair, Alpha Epsilon Lambda, Clemson University. 2016-2017
A. Lawson, Director of Communications, Graduate Student Government Executive Cabinet, Clemson University. 2015-2016
A. Lawson, Student Liaison, Statistical Ecology Section, Ecological Society of America. 2015-2016
AWARDS AND HONORS

P. Jodice, USGS Annual Performance Award, November 2015

STUDENTS

L. Burns, Clemson University Professional Enrichment Grants, 2016

J. Lamb, Publication Award for Outstanding Contribution to Conservation, Waterbird Society, 2016.

J. Lamb, Clemson University Professional Enrichment Grants, 2016

A. Lawson, Clemson University Professional Enrichment Grants, 2016

A. Lawson (co-author), T. Rainwater (lead PI), Hobcaw Barony Research Grant. 2016

F. Takahashi, 3rd place graduate student poster, Clemson Annual Biological Student Symposium, 2016.

H. Thompson, Clemson University Professional Enrichment Grants, 2016

PRESS/PUBLIC OUTREACH

Outreach: Something dangerous may be lurking in the South Carolina flood waters. Tech Insider, A. Lawson, 2015.

Outreach: Host of Biotweeps (@Biotweeps), a rotating-curator, biology-focused Twitter account for science communication. A. Lawson, 2016.

Media: Surveying for gators in order to protect the population during hunting season. WCIV-TV ABC New 4, Charleston, SC, 2015.

Twitter:

SC CRU: @SCCoopUnit

B. Ross: @betheross

A. Lawson: @AbsLawson

Y. Satgé and J. Lamb: @project_pelican

H. Thompson: @HillLThompson